

Drone Modelling, Perception and Control Introduction to Drones and Simulink

Maitreyee Mordekar, *MathWorks* https://www.linkedin.com/in/mordekarmaitreyee/

Upcoming Webinars

Drone Modeling, Perception and Control using MATLAB and Simulink

Timeline

Sl.no	Webinar Name	Date	Time	
1.	Introduction to Drones and Simulink	Tuesday, 20-Oct-2020	5.00 PM to 6.00 PM	Register Now
2.	Controls and Deployment to Hardware	Tuesday, 27-Oct-2020	5.00 PM to 6.00 PM	Register Now
3.	Planning Flight States	Tuesday, 3-Nov-2020	5.00 PM to 6.00 PM	Register Now
4.	Perception	Tuesday, 10-Nov-2020	5.00 PM to 6.00 PM	Register Now

During the Webinar

During the Webinar

- Requirement:
 - Complete MATLAB Onramp
- ~45 minutes and open to questions
- For more questions:

minidronecompetition@mathworks.com

facebook.com/groups/RoboticsArena/

What will we try achieve by the end of the webinar series?

Agenda

- What is a drone/quadcopter?
- Drone degrees of freedom
- Understanding the model of a drone
- Introduction to Simulink
- Summary of the upcoming webinars

[Poll Question] Have you used drones before?

What is a quadcopter?

- Rotating wing aircraft (rotorcraft)
- 4 rotating propellers
- Rotors used to generate lift

Knowing the system

- Work with the already available hardware
 - Parrot Mambo Minidrone
- Sensors
- Actuators
 - 4 motors each with its propeller

Sensors

- Ultrasonic Sensor
 - To calculate altitude
- Camera
 - To capture the view
 - To calculate horizontal velocities
- Pressure Sensor
 - To calculate altitude
- Inertial Measurement Unit (IMU)
 - 3-axis accelerometer
 - 3-axis gyroscope

Actuators

- 4 motors
- Provide motor commands
 - Command drone to move in specific directions
 - Decide which motor to send command to and what value to send
- Configuration:

MATLAB and Simulink

Robotics Arena

- X configuration
- + configuration

Equations of motion

MATLAB and Simulink

Robotics Arena

8

- Translational Dynamics: $F_{frame} = F_{gravity} - F_{thrust} - F_{drag}$
- Rotational Dynamics:
 - $\tau_{\text{frame}} = \tau_{\text{motors}} \tau_{\text{gyro}} \tau_{\text{inertia}}$

Drone motions

- 6 degrees of freedom
 - 1. Up-down
 - 2. Left-right
 - 3. Forward-backward
 - 4. Rotation around X-axis: Roll
 - 5. Rotation around Y-axis: Pitch
 - 6. Rotation around Z-axis: Yaw
- What we will control?
 - Thrust, Pitch, Roll, Yaw

How do we control the drone the motion? *Thrust*

MATLAB and Simulink

Robotics Arena

How do we control the drone the motion? *Yaw*

MATLAB and Simulink

Robotics Arena

28

How do we control the drone the motion? *Yaw*

How do we control the drone the motion? *Pitch*

MATLAB and Simulink Robotics Arena

How do we control the drone the motion? *Roll*

Modelling a drone

Modelling a drone

SIMULINK®

Modeling, simulation, and embedded systems

- Platform for Model-Based Design
 - Block diagram modeling
 - Simulation of physical systems
 - Automatic code generation
- Applications in:

MATLAB and Simulink

Robotics Arena

- Control systems
- Signal processing
- Communications systems

MATLAB and Simulink for Aerospace System Design

"Model-Based Design gave us advanced visibility into the functional design of the system. We also completed requirements validation earlier than was previously possible and simulated multiple simultaneous component failures, so we know what will happen and have confidence that the control logic will manage it. On earlier projects, it took up to nine months to integrate our fuel system design with the simulated cockpit, or iron bird. Using Model-Based Design on the A380, it took less than a month, Similarly, by reusing the model to commission the HIL rig, we saved three months of development and shortened the time from initial concept to first flight."

Christopher Slack,

Airbus

The Airbus A380.

Using Simulink Blocks Aerospace Blockset

- 6-DOF block to integrate the forces in moments in all directions which avoids the need to code complex mathematical equations
- Rotation blocks and Coordinate transformation blocks

[Poll Question] Have you used Simulink before?

[Modeling a differential equation]

$$\begin{aligned} y(t) &= ax(t) + b \\ y(t) &= \int (ax(t) + b) dt \end{aligned}$$

[Parrot Minidrone Competition Model]

Using Simulink Blocks

What do we have in the model?

- Model of a Parrot Mambo Minidrone
 - Plant

MATLAB and Simulink

Robotics Arena

- Sensors
- Visualization environment

- Design of a controller that hovers a drone

LEGO + Parrot Minidrone + Android

[Poll Question] Would you want to learn more about Simulink?

Recommendations for Upcoming Webinar

- Complete <u>Simulink Onramp</u>
 - To emphasize on what we learnt today
- See the video 1 on <u>Drone Simulation and Control</u>

SELF-PACED COURSE

MATLAB and Simulink

Robotics Arena

Simulink Onramp

How to access the Onramps?

- Check if your institute has Campus Wide License:
 - https://www.mathworks.com/academia/tah-support-program/eligibility.html
- Request for Trial:
 - <u>https://www.mathworks.com/campaigns/products/trials.html</u>

What will we learn in the upcoming webinar?

Resources Robotics Arena

Contact us

minidronecompetition@mathworks.com

facebook.com/groups/RoboticsArena/

Student Videos and Tutorials

mathworks.com/academia/student-competitions/tutorials-videos.html

Software offer

mathworks.com/academia/student-competitions

• Racing Lounge blog:

blogs.mathworks.com/racing-lounge

Upcoming Webinars

Drone Modeling, Perception and Control using MATLAB and Simulink

Timeline

Sl.no	Webinar Name	Date	Time	
1.	Introduction to Drones and Simulink	Tuesday, 20-Oct-2020	5.00 PM to 6.00 PM	Register Now
2.	Controls and Deployment to Hardware	Tuesday, 27-Oct-2020	5.00 PM to 6.00 PM	Register Now
3.	Planning Flight States	Tuesday, 3-Nov-2020	5.00 PM to 6.00 PM	Register Now
4.	Perception	Tuesday, 10-Nov-2020	5.00 PM to 6.00 PM	Register Now

Before Next Lesson!

- Complete <u>Simulink Onramp</u>
- See video 1 on <u>Drone Simulation and Control</u>

